... notably, this includes Abseil's own StatusOr type, which conflicted with our implementation (that was taken from TensorFlow). Change-Id: Ie7d6764b64055caaeb8dc7b6b9d066291e6b538f
		
			
				
	
	
		
			455 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			455 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //      https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/random/distributions.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/random/internal/distribution_test_util.h"
 | |
| #include "absl/random/random.h"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| constexpr int kSize = 400000;
 | |
| 
 | |
| class RandomDistributionsTest : public testing::Test {};
 | |
| 
 | |
| 
 | |
| struct Invalid {};
 | |
| 
 | |
| template <typename A, typename B>
 | |
| auto InferredUniformReturnT(int)
 | |
|     -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
 | |
|                               std::declval<A>(), std::declval<B>()));
 | |
| 
 | |
| template <typename, typename>
 | |
| Invalid InferredUniformReturnT(...);
 | |
| 
 | |
| template <typename TagType, typename A, typename B>
 | |
| auto InferredTaggedUniformReturnT(int)
 | |
|     -> decltype(absl::Uniform(std::declval<TagType>(),
 | |
|                               std::declval<absl::InsecureBitGen&>(),
 | |
|                               std::declval<A>(), std::declval<B>()));
 | |
| 
 | |
| template <typename, typename, typename>
 | |
| Invalid InferredTaggedUniformReturnT(...);
 | |
| 
 | |
| // Given types <A, B, Expect>, CheckArgsInferType() verifies that
 | |
| //
 | |
| //   absl::Uniform(gen, A{}, B{})
 | |
| //
 | |
| // returns the type "Expect".
 | |
| //
 | |
| // This interface can also be used to assert that a given absl::Uniform()
 | |
| // overload does not exist / will not compile. Given types <A, B>, the
 | |
| // expression
 | |
| //
 | |
| //   decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
 | |
| //
 | |
| // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
 | |
| // resolve (via SFINAE) to the overload which returns type "Invalid". This
 | |
| // allows tests to assert that an invocation such as
 | |
| //
 | |
| //   absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
 | |
| //
 | |
| // should not compile, since neither type, float nor int, can precisely
 | |
| // represent both endpoint-values. Writing:
 | |
| //
 | |
| //   CheckArgsInferType<float, int, Invalid>()
 | |
| //
 | |
| // will assert that this overload does not exist.
 | |
| template <typename A, typename B, typename Expect>
 | |
| void CheckArgsInferType() {
 | |
|   static_assert(
 | |
|       absl::conjunction<
 | |
|           std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
 | |
|           std::is_same<Expect,
 | |
|                        decltype(InferredUniformReturnT<B, A>(0))>>::value,
 | |
|       "");
 | |
|   static_assert(
 | |
|       absl::conjunction<
 | |
|           std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
 | |
|                                         absl::IntervalOpenOpenTag, A, B>(0))>,
 | |
|           std::is_same<Expect,
 | |
|                        decltype(InferredTaggedUniformReturnT<
 | |
|                                 absl::IntervalOpenOpenTag, B, A>(0))>>::value,
 | |
|       "");
 | |
| }
 | |
| 
 | |
| template <typename A, typename B, typename ExplicitRet>
 | |
| auto ExplicitUniformReturnT(int) -> decltype(
 | |
|     absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
 | |
|                                std::declval<A>(), std::declval<B>()));
 | |
| 
 | |
| template <typename, typename, typename ExplicitRet>
 | |
| Invalid ExplicitUniformReturnT(...);
 | |
| 
 | |
| template <typename TagType, typename A, typename B, typename ExplicitRet>
 | |
| auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
 | |
|     std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
 | |
|     std::declval<A>(), std::declval<B>()));
 | |
| 
 | |
| template <typename, typename, typename, typename ExplicitRet>
 | |
| Invalid ExplicitTaggedUniformReturnT(...);
 | |
| 
 | |
| // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
 | |
| //
 | |
| //   absl::Uniform<Expect>(gen, A{}, B{})
 | |
| //
 | |
| // returns the type "Expect", and that the function-overload has the signature
 | |
| //
 | |
| //   Expect(URBG&, Expect, Expect)
 | |
| template <typename A, typename B, typename Expect>
 | |
| void CheckArgsReturnExpectedType() {
 | |
|   static_assert(
 | |
|       absl::conjunction<
 | |
|           std::is_same<Expect,
 | |
|                        decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
 | |
|           std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
 | |
|                                    0))>>::value,
 | |
|       "");
 | |
|   static_assert(
 | |
|       absl::conjunction<
 | |
|           std::is_same<Expect,
 | |
|                        decltype(ExplicitTaggedUniformReturnT<
 | |
|                                 absl::IntervalOpenOpenTag, A, B, Expect>(0))>,
 | |
|           std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
 | |
|                                         absl::IntervalOpenOpenTag, B, A,
 | |
|                                         Expect>(0))>>::value,
 | |
|       "");
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformTypeInference) {
 | |
|   // Infers common types.
 | |
|   CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
 | |
|   CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
 | |
|   CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
 | |
|   CheckArgsInferType<int16_t, int16_t, int16_t>();
 | |
|   CheckArgsInferType<int32_t, int32_t, int32_t>();
 | |
|   CheckArgsInferType<int64_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<float, float, float>();
 | |
|   CheckArgsInferType<double, double, double>();
 | |
| 
 | |
|   // Explicitly-specified return-values override inferences.
 | |
|   CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
 | |
|   CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
 | |
|   CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
 | |
|   CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
 | |
|   CheckArgsReturnExpectedType<int16_t, int32_t, double>();
 | |
|   CheckArgsReturnExpectedType<float, float, double>();
 | |
|   CheckArgsReturnExpectedType<int, int, int16_t>();
 | |
| 
 | |
|   // Properly promotes uint16_t.
 | |
|   CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
 | |
|   CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
 | |
|   CheckArgsInferType<uint16_t, int32_t, int32_t>();
 | |
|   CheckArgsInferType<uint16_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<uint16_t, float, float>();
 | |
|   CheckArgsInferType<uint16_t, double, double>();
 | |
| 
 | |
|   // Properly promotes int16_t.
 | |
|   CheckArgsInferType<int16_t, int32_t, int32_t>();
 | |
|   CheckArgsInferType<int16_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<int16_t, float, float>();
 | |
|   CheckArgsInferType<int16_t, double, double>();
 | |
| 
 | |
|   // Invalid (u)int16_t-pairings do not compile.
 | |
|   // See "CheckArgsInferType" comments above, for how this is achieved.
 | |
|   CheckArgsInferType<uint16_t, int16_t, Invalid>();
 | |
|   CheckArgsInferType<int16_t, uint32_t, Invalid>();
 | |
|   CheckArgsInferType<int16_t, uint64_t, Invalid>();
 | |
| 
 | |
|   // Properly promotes uint32_t.
 | |
|   CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
 | |
|   CheckArgsInferType<uint32_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<uint32_t, double, double>();
 | |
| 
 | |
|   // Properly promotes int32_t.
 | |
|   CheckArgsInferType<int32_t, int64_t, int64_t>();
 | |
|   CheckArgsInferType<int32_t, double, double>();
 | |
| 
 | |
|   // Invalid (u)int32_t-pairings do not compile.
 | |
|   CheckArgsInferType<uint32_t, int32_t, Invalid>();
 | |
|   CheckArgsInferType<int32_t, uint64_t, Invalid>();
 | |
|   CheckArgsInferType<int32_t, float, Invalid>();
 | |
|   CheckArgsInferType<uint32_t, float, Invalid>();
 | |
| 
 | |
|   // Invalid (u)int64_t-pairings do not compile.
 | |
|   CheckArgsInferType<uint64_t, int64_t, Invalid>();
 | |
|   CheckArgsInferType<int64_t, float, Invalid>();
 | |
|   CheckArgsInferType<int64_t, double, Invalid>();
 | |
| 
 | |
|   // Properly promotes float.
 | |
|   CheckArgsInferType<float, double, double>();
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformExamples) {
 | |
|   // Examples.
 | |
|   absl::InsecureBitGen gen;
 | |
|   EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
 | |
|   EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
 | |
|   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
 | |
|                              static_cast<uint16_t>(0), 1.0f));
 | |
|   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
 | |
|   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
 | |
|   EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
 | |
|   EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
 | |
|   EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformNoBounds) {
 | |
|   absl::InsecureBitGen gen;
 | |
| 
 | |
|   absl::Uniform<uint8_t>(gen);
 | |
|   absl::Uniform<uint16_t>(gen);
 | |
|   absl::Uniform<uint32_t>(gen);
 | |
|   absl::Uniform<uint64_t>(gen);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {
 | |
|   // The ranges used in this test are undefined behavior.
 | |
|   // The results are arbitrary and subject to future changes.
 | |
|   absl::InsecureBitGen gen;
 | |
| 
 | |
|   // <uint>
 | |
|   EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0));
 | |
|   EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0));
 | |
|   EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0));
 | |
|   EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0));
 | |
| 
 | |
|   constexpr auto m = (std::numeric_limits<uint64_t>::max)();
 | |
| 
 | |
|   EXPECT_EQ(m, absl::Uniform(gen, m, m));
 | |
|   EXPECT_EQ(m, absl::Uniform(gen, m, m - 1));
 | |
|   EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m));
 | |
|   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m));
 | |
|   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1));
 | |
|   EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m));
 | |
| 
 | |
|   // <int>
 | |
|   EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0));
 | |
|   EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0));
 | |
|   EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0));
 | |
|   EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0));
 | |
| 
 | |
|   constexpr auto l = (std::numeric_limits<int64_t>::min)();
 | |
|   constexpr auto r = (std::numeric_limits<int64_t>::max)();
 | |
| 
 | |
|   EXPECT_EQ(l, absl::Uniform(gen, l, l));
 | |
|   EXPECT_EQ(r, absl::Uniform(gen, r, r));
 | |
|   EXPECT_EQ(r, absl::Uniform(gen, r, r - 1));
 | |
|   EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r));
 | |
|   EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l));
 | |
|   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r));
 | |
|   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1));
 | |
|   EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r));
 | |
| 
 | |
|   // <double>
 | |
|   const double e = std::nextafter(1.0, 2.0);  // 1 + epsilon
 | |
|   const double f = std::nextafter(1.0, 0.0);  // 1 - epsilon
 | |
|   const double g = std::numeric_limits<double>::denorm_min();
 | |
| 
 | |
|   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e));
 | |
|   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f));
 | |
|   EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g));
 | |
| 
 | |
|   EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e));
 | |
|   EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f));
 | |
|   EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g));
 | |
| }
 | |
| 
 | |
| // TODO(lar): Validate properties of non-default interval-semantics.
 | |
| TEST_F(RandomDistributionsTest, UniformReal) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Uniform(gen, 0, 1.0);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.5, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
 | |
|   EXPECT_NEAR(0.0, moments.skewness, 0.02);
 | |
|   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, UniformInt) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     const int64_t kMax = 1000000000000ll;
 | |
|     int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
 | |
|     // convert to double.
 | |
|     values[i] = static_cast<double>(j) / static_cast<double>(kMax);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.5, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
 | |
|   EXPECT_NEAR(0.0, moments.skewness, 0.02);
 | |
|   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
 | |
| 
 | |
|   /*
 | |
|   // NOTE: These are not supported by absl::Uniform, which is specialized
 | |
|   // on integer and real valued types.
 | |
| 
 | |
|   enum E { E0, E1 };    // enum
 | |
|   enum S : int { S0, S1 };    // signed enum
 | |
|   enum U : unsigned int { U0, U1 };  // unsigned enum
 | |
| 
 | |
|   absl::Uniform(gen, E0, E1);
 | |
|   absl::Uniform(gen, S0, S1);
 | |
|   absl::Uniform(gen, U0, U1);
 | |
|   */
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Exponential) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Exponential<double>(gen);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(1.0, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1.0, moments.variance, 0.025);
 | |
|   EXPECT_NEAR(2.0, moments.skewness, 0.1);
 | |
|   EXPECT_LT(5.0, moments.kurtosis);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, PoissonDefault) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Poisson<int64_t>(gen);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(1.0, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1.0, moments.variance, 0.02);
 | |
|   EXPECT_NEAR(1.0, moments.skewness, 0.025);
 | |
|   EXPECT_LT(2.0, moments.kurtosis);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, PoissonLarge) {
 | |
|   constexpr double kMean = 100000000.0;
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Poisson<int64_t>(gen, kMean);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
 | |
|   EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
 | |
|   EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
 | |
|   EXPECT_LT(2.0, moments.kurtosis);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Bernoulli) {
 | |
|   constexpr double kP = 0.5151515151;
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Bernoulli(gen, kP);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(kP, moments.mean, 0.01);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Beta) {
 | |
|   constexpr double kAlpha = 2.0;
 | |
|   constexpr double kBeta = 3.0;
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Beta(gen, kAlpha, kBeta);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.4, moments.mean, 0.01);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Zipf) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Zipf<int64_t>(gen, 100);
 | |
|   }
 | |
| 
 | |
|   // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
 | |
|   // Given the parameter v = 1, this gives the following function:
 | |
|   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, Gaussian) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::Gaussian<double>(gen);
 | |
|   }
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(0.0, moments.mean, 0.02);
 | |
|   EXPECT_NEAR(1.0, moments.variance, 0.04);
 | |
|   EXPECT_NEAR(0, moments.skewness, 0.2);
 | |
|   EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
 | |
| }
 | |
| 
 | |
| TEST_F(RandomDistributionsTest, LogUniform) {
 | |
|   std::vector<double> values(kSize);
 | |
| 
 | |
|   absl::InsecureBitGen gen;
 | |
|   for (int i = 0; i < kSize; i++) {
 | |
|     values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
 | |
|   }
 | |
| 
 | |
|   // The mean is the sum of the fractional means of the uniform distributions:
 | |
|   // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
 | |
|   // [64..127][128..255][256..511][512..1023]
 | |
|   const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
 | |
|                        64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
 | |
|                       (2.0 * 11.0);
 | |
| 
 | |
|   const auto moments =
 | |
|       absl::random_internal::ComputeDistributionMoments(values);
 | |
|   EXPECT_NEAR(mean, moments.mean, 2) << moments;
 | |
| }
 | |
| 
 | |
| }  // namespace
 |