git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54begit-subtree-split:768eb2ca28
		
			
				
	
	
		
			452 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			452 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2017 The Abseil Authors.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//      https://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// File: distributions.h
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// This header defines functions representing distributions, which you use in
 | 
						|
// combination with an Abseil random bit generator to produce random values
 | 
						|
// according to the rules of that distribution.
 | 
						|
//
 | 
						|
// The Abseil random library defines the following distributions within this
 | 
						|
// file:
 | 
						|
//
 | 
						|
//   * `absl::Uniform` for uniform (constant) distributions having constant
 | 
						|
//     probability
 | 
						|
//   * `absl::Bernoulli` for discrete distributions having exactly two outcomes
 | 
						|
//   * `absl::Beta` for continuous distributions parameterized through two
 | 
						|
//     free parameters
 | 
						|
//   * `absl::Exponential` for discrete distributions of events occurring
 | 
						|
//     continuously and independently at a constant average rate
 | 
						|
//   * `absl::Gaussian` (also known as "normal distributions") for continuous
 | 
						|
//     distributions using an associated quadratic function
 | 
						|
//   * `absl::LogUniform` for continuous uniform distributions where the log
 | 
						|
//     to the given base of all values is uniform
 | 
						|
//   * `absl::Poisson` for discrete probability distributions that express the
 | 
						|
//     probability of a given number of events occurring within a fixed interval
 | 
						|
//   * `absl::Zipf` for discrete probability distributions commonly used for
 | 
						|
//     modelling of rare events
 | 
						|
//
 | 
						|
// Prefer use of these distribution function classes over manual construction of
 | 
						|
// your own distribution classes, as it allows library maintainers greater
 | 
						|
// flexibility to change the underlying implementation in the future.
 | 
						|
 | 
						|
#ifndef ABSL_RANDOM_DISTRIBUTIONS_H_
 | 
						|
#define ABSL_RANDOM_DISTRIBUTIONS_H_
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
#include <limits>
 | 
						|
#include <random>
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
#include "absl/base/internal/inline_variable.h"
 | 
						|
#include "absl/random/bernoulli_distribution.h"
 | 
						|
#include "absl/random/beta_distribution.h"
 | 
						|
#include "absl/random/exponential_distribution.h"
 | 
						|
#include "absl/random/gaussian_distribution.h"
 | 
						|
#include "absl/random/internal/distributions.h"  // IWYU pragma: export
 | 
						|
#include "absl/random/internal/uniform_helper.h"  // IWYU pragma: export
 | 
						|
#include "absl/random/log_uniform_int_distribution.h"
 | 
						|
#include "absl/random/poisson_distribution.h"
 | 
						|
#include "absl/random/uniform_int_distribution.h"
 | 
						|
#include "absl/random/uniform_real_distribution.h"
 | 
						|
#include "absl/random/zipf_distribution.h"
 | 
						|
 | 
						|
namespace absl {
 | 
						|
ABSL_NAMESPACE_BEGIN
 | 
						|
 | 
						|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosedClosed,
 | 
						|
                               {});
 | 
						|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosed, {});
 | 
						|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedOpenTag, IntervalClosedOpen, {});
 | 
						|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpenOpen, {});
 | 
						|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpen, {});
 | 
						|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenClosedTag, IntervalOpenClosed, {});
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::Uniform<T>(tag, bitgen, lo, hi)
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// `absl::Uniform()` produces random values of type `T` uniformly distributed in
 | 
						|
// a defined interval {lo, hi}. The interval `tag` defines the type of interval
 | 
						|
// which should be one of the following possible values:
 | 
						|
//
 | 
						|
//   * `absl::IntervalOpenOpen`
 | 
						|
//   * `absl::IntervalOpenClosed`
 | 
						|
//   * `absl::IntervalClosedOpen`
 | 
						|
//   * `absl::IntervalClosedClosed`
 | 
						|
//
 | 
						|
// where "open" refers to an exclusive value (excluded) from the output, while
 | 
						|
// "closed" refers to an inclusive value (included) from the output.
 | 
						|
//
 | 
						|
// In the absence of an explicit return type `T`, `absl::Uniform()` will deduce
 | 
						|
// the return type based on the provided endpoint arguments {A lo, B hi}.
 | 
						|
// Given these endpoints, one of {A, B} will be chosen as the return type, if
 | 
						|
// a type can be implicitly converted into the other in a lossless way. The
 | 
						|
// lack of any such implicit conversion between {A, B} will produce a
 | 
						|
// compile-time error
 | 
						|
//
 | 
						|
// See https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::BitGen bitgen;
 | 
						|
//
 | 
						|
//   // Produce a random float value between 0.0 and 1.0, inclusive
 | 
						|
//   auto x = absl::Uniform(absl::IntervalClosedClosed, bitgen, 0.0f, 1.0f);
 | 
						|
//
 | 
						|
//   // The most common interval of `absl::IntervalClosedOpen` is available by
 | 
						|
//   // default:
 | 
						|
//
 | 
						|
//   auto x = absl::Uniform(bitgen, 0.0f, 1.0f);
 | 
						|
//
 | 
						|
//   // Return-types are typically inferred from the arguments, however callers
 | 
						|
//   // can optionally provide an explicit return-type to the template.
 | 
						|
//
 | 
						|
//   auto x = absl::Uniform<float>(bitgen, 0, 1);
 | 
						|
//
 | 
						|
template <typename R = void, typename TagType, typename URBG>
 | 
						|
typename absl::enable_if_t<!std::is_same<R, void>::value, R>  //
 | 
						|
Uniform(TagType tag,
 | 
						|
        URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
        R lo, R hi) {
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = random_internal::UniformDistributionWrapper<R>;
 | 
						|
 | 
						|
  auto a = random_internal::uniform_lower_bound(tag, lo, hi);
 | 
						|
  auto b = random_internal::uniform_upper_bound(tag, lo, hi);
 | 
						|
  if (a > b) return a;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, tag, lo, hi);
 | 
						|
}
 | 
						|
 | 
						|
// absl::Uniform<T>(bitgen, lo, hi)
 | 
						|
//
 | 
						|
// Overload of `Uniform()` using the default closed-open interval of [lo, hi),
 | 
						|
// and returning values of type `T`
 | 
						|
template <typename R = void, typename URBG>
 | 
						|
typename absl::enable_if_t<!std::is_same<R, void>::value, R>  //
 | 
						|
Uniform(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
        R lo, R hi) {
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = random_internal::UniformDistributionWrapper<R>;
 | 
						|
 | 
						|
  constexpr auto tag = absl::IntervalClosedOpen;
 | 
						|
  auto a = random_internal::uniform_lower_bound(tag, lo, hi);
 | 
						|
  auto b = random_internal::uniform_upper_bound(tag, lo, hi);
 | 
						|
  if (a > b) return a;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, lo, hi);
 | 
						|
}
 | 
						|
 | 
						|
// absl::Uniform(tag, bitgen, lo, hi)
 | 
						|
//
 | 
						|
// Overload of `Uniform()` using different (but compatible) lo, hi types. Note
 | 
						|
// that a compile-error will result if the return type cannot be deduced
 | 
						|
// correctly from the passed types.
 | 
						|
template <typename R = void, typename TagType, typename URBG, typename A,
 | 
						|
          typename B>
 | 
						|
typename absl::enable_if_t<std::is_same<R, void>::value,
 | 
						|
                           random_internal::uniform_inferred_return_t<A, B>>
 | 
						|
Uniform(TagType tag,
 | 
						|
        URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
        A lo, B hi) {
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using return_t = typename random_internal::uniform_inferred_return_t<A, B>;
 | 
						|
  using distribution_t = random_internal::UniformDistributionWrapper<return_t>;
 | 
						|
 | 
						|
  auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi);
 | 
						|
  auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi);
 | 
						|
  if (a > b) return a;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, tag, static_cast<return_t>(lo),
 | 
						|
                                static_cast<return_t>(hi));
 | 
						|
}
 | 
						|
 | 
						|
// absl::Uniform(bitgen, lo, hi)
 | 
						|
//
 | 
						|
// Overload of `Uniform()` using different (but compatible) lo, hi types and the
 | 
						|
// default closed-open interval of [lo, hi). Note that a compile-error will
 | 
						|
// result if the return type cannot be deduced correctly from the passed types.
 | 
						|
template <typename R = void, typename URBG, typename A, typename B>
 | 
						|
typename absl::enable_if_t<std::is_same<R, void>::value,
 | 
						|
                           random_internal::uniform_inferred_return_t<A, B>>
 | 
						|
Uniform(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
        A lo, B hi) {
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using return_t = typename random_internal::uniform_inferred_return_t<A, B>;
 | 
						|
  using distribution_t = random_internal::UniformDistributionWrapper<return_t>;
 | 
						|
 | 
						|
  constexpr auto tag = absl::IntervalClosedOpen;
 | 
						|
  auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi);
 | 
						|
  auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi);
 | 
						|
  if (a > b) return a;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, static_cast<return_t>(lo),
 | 
						|
                                static_cast<return_t>(hi));
 | 
						|
}
 | 
						|
 | 
						|
// absl::Uniform<unsigned T>(bitgen)
 | 
						|
//
 | 
						|
// Overload of Uniform() using the minimum and maximum values of a given type
 | 
						|
// `T` (which must be unsigned), returning a value of type `unsigned T`
 | 
						|
template <typename R, typename URBG>
 | 
						|
typename absl::enable_if_t<!std::is_signed<R>::value, R>  //
 | 
						|
Uniform(URBG&& urbg) {  // NOLINT(runtime/references)
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = random_internal::UniformDistributionWrapper<R>;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg);
 | 
						|
}
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::Bernoulli(bitgen, p)
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// `absl::Bernoulli` produces a random boolean value, with probability `p`
 | 
						|
// (where 0.0 <= p <= 1.0) equaling `true`.
 | 
						|
//
 | 
						|
// Prefer `absl::Bernoulli` to produce boolean values over other alternatives
 | 
						|
// such as comparing an `absl::Uniform()` value to a specific output.
 | 
						|
//
 | 
						|
// See https://en.wikipedia.org/wiki/Bernoulli_distribution
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::BitGen bitgen;
 | 
						|
//   ...
 | 
						|
//   if (absl::Bernoulli(bitgen, 1.0/3721.0)) {
 | 
						|
//     std::cout << "Asteroid field navigation successful.";
 | 
						|
//   }
 | 
						|
//
 | 
						|
template <typename URBG>
 | 
						|
bool Bernoulli(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
               double p) {
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = absl::bernoulli_distribution;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, p);
 | 
						|
}
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::Beta<T>(bitgen, alpha, beta)
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// `absl::Beta` produces a floating point number distributed in the closed
 | 
						|
// interval [0,1] and parameterized by two values `alpha` and `beta` as per a
 | 
						|
// Beta distribution. `T` must be a floating point type, but may be inferred
 | 
						|
// from the types of `alpha` and `beta`.
 | 
						|
//
 | 
						|
// See https://en.wikipedia.org/wiki/Beta_distribution.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::BitGen bitgen;
 | 
						|
//   ...
 | 
						|
//   double sample = absl::Beta(bitgen, 3.0, 2.0);
 | 
						|
//
 | 
						|
template <typename RealType, typename URBG>
 | 
						|
RealType Beta(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
              RealType alpha, RealType beta) {
 | 
						|
  static_assert(
 | 
						|
      std::is_floating_point<RealType>::value,
 | 
						|
      "Template-argument 'RealType' must be a floating-point type, in "
 | 
						|
      "absl::Beta<RealType, URBG>(...)");
 | 
						|
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = typename absl::beta_distribution<RealType>;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, alpha, beta);
 | 
						|
}
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::Exponential<T>(bitgen, lambda = 1)
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// `absl::Exponential` produces a floating point number representing the
 | 
						|
// distance (time) between two consecutive events in a point process of events
 | 
						|
// occurring continuously and independently at a constant average rate. `T` must
 | 
						|
// be a floating point type, but may be inferred from the type of `lambda`.
 | 
						|
//
 | 
						|
// See https://en.wikipedia.org/wiki/Exponential_distribution.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::BitGen bitgen;
 | 
						|
//   ...
 | 
						|
//   double call_length = absl::Exponential(bitgen, 7.0);
 | 
						|
//
 | 
						|
template <typename RealType, typename URBG>
 | 
						|
RealType Exponential(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
                     RealType lambda = 1) {
 | 
						|
  static_assert(
 | 
						|
      std::is_floating_point<RealType>::value,
 | 
						|
      "Template-argument 'RealType' must be a floating-point type, in "
 | 
						|
      "absl::Exponential<RealType, URBG>(...)");
 | 
						|
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = typename absl::exponential_distribution<RealType>;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, lambda);
 | 
						|
}
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::Gaussian<T>(bitgen, mean = 0, stddev = 1)
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// `absl::Gaussian` produces a floating point number selected from the Gaussian
 | 
						|
// (ie. "Normal") distribution. `T` must be a floating point type, but may be
 | 
						|
// inferred from the types of `mean` and `stddev`.
 | 
						|
//
 | 
						|
// See https://en.wikipedia.org/wiki/Normal_distribution
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::BitGen bitgen;
 | 
						|
//   ...
 | 
						|
//   double giraffe_height = absl::Gaussian(bitgen, 16.3, 3.3);
 | 
						|
//
 | 
						|
template <typename RealType, typename URBG>
 | 
						|
RealType Gaussian(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
                  RealType mean = 0, RealType stddev = 1) {
 | 
						|
  static_assert(
 | 
						|
      std::is_floating_point<RealType>::value,
 | 
						|
      "Template-argument 'RealType' must be a floating-point type, in "
 | 
						|
      "absl::Gaussian<RealType, URBG>(...)");
 | 
						|
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = typename absl::gaussian_distribution<RealType>;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, mean, stddev);
 | 
						|
}
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::LogUniform<T>(bitgen, lo, hi, base = 2)
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// `absl::LogUniform` produces random values distributed where the log to a
 | 
						|
// given base of all values is uniform in a closed interval [lo, hi]. `T` must
 | 
						|
// be an integral type, but may be inferred from the types of `lo` and `hi`.
 | 
						|
//
 | 
						|
// I.e., `LogUniform(0, n, b)` is uniformly distributed across buckets
 | 
						|
// [0], [1, b-1], [b, b^2-1] .. [b^(k-1), (b^k)-1] .. [b^floor(log(n, b)), n]
 | 
						|
// and is uniformly distributed within each bucket.
 | 
						|
//
 | 
						|
// The resulting probability density is inversely related to bucket size, though
 | 
						|
// values in the final bucket may be more likely than previous values. (In the
 | 
						|
// extreme case where n = b^i the final value will be tied with zero as the most
 | 
						|
// probable result.
 | 
						|
//
 | 
						|
// If `lo` is nonzero then this distribution is shifted to the desired interval,
 | 
						|
// so LogUniform(lo, hi, b) is equivalent to LogUniform(0, hi-lo, b)+lo.
 | 
						|
//
 | 
						|
// See http://ecolego.facilia.se/ecolego/show/Log-Uniform%20Distribution
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::BitGen bitgen;
 | 
						|
//   ...
 | 
						|
//   int v = absl::LogUniform(bitgen, 0, 1000);
 | 
						|
//
 | 
						|
template <typename IntType, typename URBG>
 | 
						|
IntType LogUniform(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
                   IntType lo, IntType hi, IntType base = 2) {
 | 
						|
  static_assert(std::is_integral<IntType>::value,
 | 
						|
                "Template-argument 'IntType' must be an integral type, in "
 | 
						|
                "absl::LogUniform<IntType, URBG>(...)");
 | 
						|
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = typename absl::log_uniform_int_distribution<IntType>;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, lo, hi, base);
 | 
						|
}
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::Poisson<T>(bitgen, mean = 1)
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// `absl::Poisson` produces discrete probabilities for a given number of events
 | 
						|
// occurring within a fixed interval within the closed interval [0, max]. `T`
 | 
						|
// must be an integral type.
 | 
						|
//
 | 
						|
// See https://en.wikipedia.org/wiki/Poisson_distribution
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::BitGen bitgen;
 | 
						|
//   ...
 | 
						|
//   int requests_per_minute = absl::Poisson<int>(bitgen, 3.2);
 | 
						|
//
 | 
						|
template <typename IntType, typename URBG>
 | 
						|
IntType Poisson(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
                double mean = 1.0) {
 | 
						|
  static_assert(std::is_integral<IntType>::value,
 | 
						|
                "Template-argument 'IntType' must be an integral type, in "
 | 
						|
                "absl::Poisson<IntType, URBG>(...)");
 | 
						|
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = typename absl::poisson_distribution<IntType>;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, mean);
 | 
						|
}
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
// absl::Zipf<T>(bitgen, hi = max, q = 2, v = 1)
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
// `absl::Zipf` produces discrete probabilities commonly used for modelling of
 | 
						|
// rare events over the closed interval [0, hi]. The parameters `v` and `q`
 | 
						|
// determine the skew of the distribution. `T`  must be an integral type, but
 | 
						|
// may be inferred from the type of `hi`.
 | 
						|
//
 | 
						|
// See http://mathworld.wolfram.com/ZipfDistribution.html
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//   absl::BitGen bitgen;
 | 
						|
//   ...
 | 
						|
//   int term_rank = absl::Zipf<int>(bitgen);
 | 
						|
//
 | 
						|
template <typename IntType, typename URBG>
 | 
						|
IntType Zipf(URBG&& urbg,  // NOLINT(runtime/references)
 | 
						|
             IntType hi = (std::numeric_limits<IntType>::max)(), double q = 2.0,
 | 
						|
             double v = 1.0) {
 | 
						|
  static_assert(std::is_integral<IntType>::value,
 | 
						|
                "Template-argument 'IntType' must be an integral type, in "
 | 
						|
                "absl::Zipf<IntType, URBG>(...)");
 | 
						|
 | 
						|
  using gen_t = absl::decay_t<URBG>;
 | 
						|
  using distribution_t = typename absl::zipf_distribution<IntType>;
 | 
						|
 | 
						|
  return random_internal::DistributionCaller<gen_t>::template Call<
 | 
						|
      distribution_t>(&urbg, hi, q, v);
 | 
						|
}
 | 
						|
 | 
						|
ABSL_NAMESPACE_END
 | 
						|
}  // namespace absl
 | 
						|
 | 
						|
#endif  // ABSL_RANDOM_DISTRIBUTIONS_H_
 |